MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 10

Due date: Dec 2 (Wed)

Exercises from the textbook. 14.1, 14.2, 14.3, 14.4

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

- 1. Let $(x_n)_n$ be a sequence of positive reals. Prove that the sequence $\left(\frac{1}{x_n}\right)_n$ is bounded if and only if there exists $\lambda > 0$ such that $\forall n \in \mathbb{N} \ \lambda < x_n$.
- **2.** (a) Let $\lambda > 1$. Prove that for all $n \in \mathbb{N}, \lambda^n \ge 1 + n(\lambda 1)$. Conclude that the sequence $(\lambda^n)_n$ is unbounded. Thus, what do you conclude about its convergence?
 - (b) Prove that for $0 \le \lambda < 1$, the sequence $(\lambda^n)_n$ converges to 0.
- **3.** Determine whether the following sequences converge and prove your answers.
 - (a) $\left(\frac{n}{3\sqrt{n-2}}\right)_n$
 - (b) $\left(\frac{n}{3n-2}\right)_n$
 - (c) $\left(\frac{n}{3n^2-2}\right)_n$

 - (d) $\left(\frac{n^2+1}{2n^2+n+3}\right)_n$
 - (e) $\left(\sqrt{n(n+1)} n\right)_{n}$
 - (f) $\left(\sqrt{n(n+1)} \sqrt{n}\right)_n$
- 4. Let (x_n) be a sequence of positive reals such that

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L > 1.$$

Follow the steps (i)–(iii) below to prove that $(x_n)_n$ is unbounded, and hence divergent.

- (i) Prove that for any $\lambda < L$, there is $N_{\lambda} \in \mathbb{N}$ such that $\forall n \ge N, x_{n+1} > \lambda x_n$.
- (ii) Fix a real $\lambda \in (1, L)$ and let N_{λ} be as in part (i). Using induction, prove that for all $n \ge N_{\lambda},$

$$x_n \ge \lambda^{n-N_\lambda} x_{N_\lambda}.$$

- (iii) Conclude that $(x_n)_n$ is unbounded, and hence divergent.
- 5. (Tricky) Prove that any set $A \subseteq \mathbb{R}$ that is bounded above contains a sequence $(x_n)_n \subseteq A$ whose limit is $\sup A$.
- **6.** Let $(a_n)_n$ be increasing and $(b_n)_n$ decreasing. Suppose that $\lim_{n \to \infty} b_n a_n = 0$.
 - (a) Prove that for all $n, m \in \mathbb{N}, a_n \leq b_m$.

- (b) Conclude that both $(a_n)_n$ and $(b_n)_n$ converge.
- (c) Carefully prove that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

REMARK: Although parts (b) and (c) have appeared on Midterm 3, I still think it would be instructive if you carefully wrote up your own understanding of the proofs one more time.