MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 10
Due date: Dec 2 (Wed)

Exercises from the textbook. 14.1, 14.2, 14.3, 14.4

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

1. Let $\left(x_{n}\right)_{n}$ be a sequence of positive reals. Prove that the sequence $\left(\frac{1}{x_{n}}\right)_{n}$ is bounded if and only if there exists $\lambda>0$ such that $\forall n \in \mathbb{N} \lambda<x_{n}$.
2. (a) Let $\lambda>1$. Prove that for all $n \in \mathbb{N}, \lambda^{n} \geq 1+n(\lambda-1)$. Conclude that the sequence $\left(\lambda^{n}\right)_{n}$ is unbounded. Thus, what do you conclude about its convergence?
(b) Prove that for $0 \leq \lambda<1$, the sequence $\left(\lambda^{n}\right)_{n}$ converges to 0 .
3. Determine whether the following sequences converge and prove your answers.
(a) $\left(\frac{n}{3 \sqrt{n}-2}\right)_{n}$
(b) $\left(\frac{n}{3 n-2}\right)_{n}$
(c) $\left(\frac{n}{3 n^{2}-2}\right)_{n}$
(d) $\left(\frac{n^{2}+1}{2 n^{2}+n+3}\right)_{n}$
(e) $(\sqrt{n(n+1)}-n)_{n}$
(f) $(\sqrt{n(n+1)}-\sqrt{n})_{n}$
4. Let $\left(x_{n}\right)$ be a sequence of positive reals such that

$$
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=L>1
$$

Follow the steps (i)-(iii) below to prove that $\left(x_{n}\right)_{n}$ is unbounded, and hence divergent.
(i) Prove that for any $\lambda<L$, there is $N_{\lambda} \in \mathbb{N}$ such that $\forall n \geq N, x_{n+1}>\lambda x_{n}$.
(ii) Fix a real $\lambda \in(1, L)$ and let N_{λ} be as in part (i). Using induction, prove that for all $n \geq N_{\lambda}$,

$$
x_{n} \geq \lambda^{n-N_{\lambda}} x_{N_{\lambda}} .
$$

(iii) Conclude that $\left(x_{n}\right)_{n}$ is unbounded, and hence divergent.
5. (Tricky) Prove that any set $A \subseteq \mathbb{R}$ that is bounded above contains a sequence $\left(x_{n}\right)_{n} \subseteq A$ whose limit is $\sup A$.
6. Let $\left(a_{n}\right)_{n}$ be increasing and $\left(b_{n}\right)_{n}$ decreasing. Suppose that $\lim _{n \rightarrow \infty} b_{n}-a_{n}=0$.
(a) Prove that for all $n, m \in \mathbb{N}, a_{n} \leq b_{m}$.
(b) Conclude that both $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ converge.
(c) Carefully prove that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Remark: Although parts (b) and (c) have appeared on Midterm 3, I still think it would be instructive if you carefully wrote up your own understanding of the proofs one more time.

